RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2014

FIRST YEAR

Date : 23/05/2014 Time : 11 am – 3 pm

Paper : II

MATHEMATICS(Honours)

Full Marks : 100

[5]

[5]

[Use a Separate Answer Book for each group]

<u>Group – A</u>

Answer any five questions from **Q.No. 1 to Q.No. 8** :

1. If n be a positive integer, prove that—

$$\frac{1}{2\sqrt{n+1}} < \frac{1.3.5...(2n-1)}{2.4.6...2n} < \frac{1}{\sqrt{2n+1}}$$

- 2. State the theorem on weighted mean related to inequality. Apply this to find the maximum value of (1-x)(1-y)(1-z) when x, y, z > 0 and x+y+z = 1. [2+3]
- 3. a) Use De Moivre's theorem to show that the roots of the equation $z^n = (z+1)^n$, where n is a positive integer > 1, representing the points in z-plane, are collinear.
 - b) Find the general values and the principal value of $(-1)^{\sqrt{2}}$. [3+2]

4. Prove that
$$\sin\left[i\log\frac{a-ib}{a+ib}\right] = \frac{2ab}{a^2+b^2}$$
. [5]

- 5. Solve the equation : $x^4 2x^3 + 4x^2 + 6x 21 = 0$, given that the sum of two of the roots is zero. [5]
- 6. Transform the equation $x^4 + 4x^3 + 7x^2 + 6x 4 = 0$ into one which has no second degree term and hence solve the given equation. [5]
- 7. Reduce the reciprocal equation $3x^6 + x^5 27x^4 + 27x^2 x 3 = 0$ to a reciprocal equation of the standard form and solve it. [5]
- 8. Solve by Ferrari's method the equation : $x^4 10x^3 + 35x^2 50x + 24 = 0$.

Answer any five questions from Q.No. 9 to Q.No. 16 :

9. a) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Show that $S = \{x \in [a,b]: f(x) = 0\}$ is a compact subset of [a,b].

b) Exhibit an open cover of the set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ that has no finite subcover. Is this set compact? Justify your answer. [2+3]

10. a) Test the convergence of the series : $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$

- b) Examine the convergence of the series : $1 + \frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \dots$ [2+3]
- 11. a) State Abel's theorem for a convergent series of positive real numbers.
 - b) Prove that an absolutely convergent series is convergent. Show that the series $1 \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \frac{1}{5^2} \frac{1}{6^2} + \dots$ is convergent. [1+4]
- 12. Let I = [a,b] be a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be continuous on I. Then prove that $f(I) = \{f(x): x \in I\}$ is a closed and bounded interval. [5]

- 13. a) A function $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and $x_1, x_2, ..., x_n \in [a,b]$. Prove that there is a point $c \in [a,b]$ such that $f(c) = \frac{f(x_1) + f(x_2) + ... + f(x_n)}{n}$.
 - b) Prove that the function $f(x) = \sin \frac{1}{x}$, $x \in (0,1)$ is not uniformly continuous on (0,1). [3+2]

14. a) Let $f:[0,1] \to \mathbb{R}$ be a continuous function on [0,1]. Show that $\left\{ f\left(1-\frac{1}{n}\right) \right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} .

- b) Let I be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ be a function such that f' exists and is bounded on I. Prove that f is uniformly continuous on I. [2+3]
- 15. a) Prove that $\sin x < x$ in $0 < x < \frac{\pi}{2}$ and $\sin x < \tan x$ in $0 < x < \frac{\pi}{2}$.
 - b) Prove that the equation $(x-1)^3 + (x-2)^3 + (x-3)^3 + (x-4)^3 = 0$ has only one real root. [3+2]
- 16. a) Prove that between any two real roots of the equation $e^x \sin x + 1 = 0$, there is at least one real root of the equation $\tan x + 1 = 0$.

b) Find *a* and b such that
$$\lim_{x \to 0} \frac{ae^x + be^{-x} + 2\sin x}{\sin x + x\cos x} = 2.$$
 [3+2]

<u>Group – B</u>

Answer **any four** questions from **Q.No. 17 to Q.No. 22** :

17. a) By Laplace's expansion show that
$$\begin{vmatrix} a & -b & -a & b \\ b & a & -b & -a \\ c & -d & c & -d \\ d & c & d & c \end{vmatrix} = 4(a^2 + b^2)(c^2 + d^2).$$

b) If A be a symmetric matrix of order m and P be an mxn matrix, prove that P^tAP is a symmetric matrix. [3+2]

18. Prove that the matrix $\frac{1}{3} \begin{pmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$ is orthogonal.

Utilise this to solve the equations :

$$x - 2y + 2z = 2$$

 $2x - y - 2z = 1$. [2+3]
 $2x + 2y + z = 7$

19. Obtain the fully reduced normal form of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix}$. Find the non-singular matrices P,

Q such that PAQ is the fully reduced normal form.

- 20. Show that the following set of vectors (1,1,0,1), (1,-2,0,1), (1,0,-1,2) is linearly independent in \mathbb{R}^4 . Extend this set to a basis of \mathbb{R}^4 . Express $\overline{x} = (x_1, x_2, x_3, x_4)$ in terms of the basis so formed. [5]
- 21. Find dim $S \cap T$, where S and T are subspaces of the vector space \mathbb{R}^4 given by $S = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y + 3z + w = 0\}, T = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2y + z + 3w = 0\}.$ [5]

[3+2]

- 22. a) Find the coordinates of the vector $\alpha = (0,3,1)$ in \mathbb{R}^3 relative to the basis $(\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = (1,1,0), \ \alpha_2 = (1,0,1), \ \alpha_3 = (0,1,1).$
 - b) Find a basis of the vector space \mathbb{R}^3 that contains the vectors (1,2,1) and (3,6,2).

[3+2]

[4+2+4]

Answer any three questions from Q.No. 23 to Q.No. 27 :

23. a) Verify that $x_1 = 2, x_2 = 1, x_3 = 3$ is a feasible solution to the equations :

 $4x_1 + 2x_2 - 3x_3 = 1$ $6x_1 + 4x_2 - 5x_3 = 1$

Reduce this to a basic feasible solution.

b) Use simplex method to solve the following L.P.P.

Maximize $z = 5x_1 + 2x_2$

subject to $6x_1 + 10x_2 \le 30$

$$10x_1 + 4x_2 \le 20; x_1, x_2 \ge 0.$$

Is the solution unique? If not, write down the convex combination of the alternative optima. [4+6]

24. a) Find the optimal solution of the following problem by solving its dual :

Maximize $z = 3x_1 + 4x_2$ subject to $x_1 + x_2 \le 10$ $2x_1 + 3x_2 \le 18$ $x_1 \le 8$ $x_2 \le 6$ $x_1, x_2 \ge 0$.

- b) Prove that every extreme point of the convex set of all feasible solutions of the system $Ax = b, x \ge 0$ corresponds to a basic feasible solution. [5+5]
- 25. a) Prove that the number of basic variables in a transportation problem is at most (m+n-1).
 - b) Prove that if a constraint of a primal problem is an equation then the corresponding dual variable is unrestricted in sign.
 - c) Solve the following Travelling Salesman problem :

	Α	В	С	D
А	8	5	8	4
В	5	8	7	4
С	8	7	8	8
D	4	4	8	8

26. a) Solve the following problem by two-phase method :

```
Maximize z = 4x_1 + 7x_2
```

subject to $12x_1 + 7x_2 \le 42$ $5x_1 + 4x_2 \le 20$ $2x_1 + 3x_2 \ge 6$ $x_1, x_2 \ge 0$.

b) Show that a basic feasible solution of the system of equations Ax = b, $x \ge 0$ corresponds to an extreme point of the convex set of feasible solutions. [6+4]

27. a) Find the optimal solution of the following transportation problem :

	D_1	D_2	D_3	D_4	ai
O_1	19	30	50	10	7
O_2	70	30	40	60	9
O ₃	40	8	70	20	18
$\mathbf{b}_{\mathbf{j}}$	5	8	7	14	

b) The Head of the department has five jobs A,B,C,D,E and five sub-ordinates V,W,X,Y,Z. The number of hours each man would take to perform each job is as follows :

	V	W	Х	Y	Ζ
А	3	5	10	15	8
В	4	7	15	18	8
С	8	12	20	20	12
D	5	5	8	10	6
E	10	10	15	25	10

How would the jobs be allocated to minimize the total time.

[5+5]

80衆Q